Neuropsychology and Tourette Syndrome

Tara Murphy, Paediatric Clinical Neuropsychologist
Tourette syndrome Clinic, Great Ormond Street Hospital, London
T.Murphy@ich.ucl.ac.uk
History

- Until 2000s
 - small Ns
 - lack of control data
 - little consideration of co-occurring disorders
Brain Pathways

- MRI research (Peterson et al, 2003; Raz et al, 2009; Miller et al, 2010; Tobe et al, 2009)
- Dopamine overproduction (neuroleptics)
- DBS
- Premonitory Urge
- Motor circuitry

Cortico-striatal-thalamo-cortical loop

Osman and Smerz, 2005
Studies 1978-2011 suggest no significant GLd
Brand et al. (2002) reported that 23 children with TS-only scored higher IQ than 17 TS+ADHD children
Schuerholz (1996) & Hagin (1982) mean IQ of a TS-only group 1SD > than controls
Huckleba et al. (2008) reported low IQ in N= 47 associated with weak numeracy
Debes (2011) N= 266 (TS only- 125) VIQ = 93, PIQ=87
 - Each year the tics emerged later, PIQ was >1 point increase
 - TS + OCD FSIQ >TS+ ADHD + OCD FSIQ group.
 - No effects of medication or tic severity (YGTSS)
 - TS-only < Controls only differed on BD
 - TS+ADHD < Control on DS

Neuropsychological testing battery including *Purdue Pegboard Test*.

Follow-up 7.5 years later

Weaker performance with the dominant hand on Pegboard predicted worse adulthood tic severity

Weak performance bilaterally on Pegboard predicted worse psychosocial functioning
Rule governed language (Walenski et al., 2007)
- Processing of predictable procedurally based regular verb conjugation (e.g. *slip-slipped*) more fluent in TS than controls

Speech dysfluencies (De Nil LF et al., 2005)
- Normal (conversational) but not atypical (objectively measured) dysfluencies were more frequent but were present in relatives and self-perceived reading difficulties

Higher Level Language Skills
- Legg et al, 2005 TLC - Disorganized output, concreteness and poor language formulation abilities

Parental Vocab deficits
- Casey et al (2000)
Executive Function

- **Deficits**
 - Pure TS < Controls on inhibition and strategy, TS+ADHD < Controls on all executive functioning measures (inhibition and strategy use, multitasking, rule following, and set shifting), TS + OCD not different to Controls (Channon, Pratt, & Robertson, 2003, Crawford, Channon, & Robertson, 2005).
 - Use of the BRIEF suggested deficits with WM but not other areas (unless co-occurring ADHD) with little correlation between experimental and self-report measures (Mahone et al., 2002)
 - CANTAB - deficits present especially in older children (Rasmussen et al, 2009; Bornstein et al., 1985)
Is Tic Suppression an Advantage?
Enhanced Cognitive Control

- Osmon and Smerz (2005) Overview
 - Oculomotor switching task greater cognitive control over movements.
 - Sub-cortical locus for the triggering of tics
 - Go/Nogo task
 - Go/Nogo task
 - Omission errors problematic not commission errors
 - Time estimation stronger in children with TS only
 - WM changes in individuals with TS
 - Increased diffusivity: particularly in the corpus callosum and forceps minor
 - Motor-response tasks
What about Neural Correlates?

- Cause or effect? (Jackson et al 2011)
- Continued Inhibition of tics leads to compensatory self-regulation mechanisms
- How can we use this cognitive strength therapeutically?
Causal Model of Tics?

Genetic Brain Abnormality

Inhibition

Tic (Suppression) Disorder

Single Strength Model?
Comorbidity
Prevalence

- ADHD
 - Deficits with Inattention, Hyperactivity and Impulsivity
 - TD - 50-55% cases (Freeman et al, 2007; Rothenberger, 1991)
 - ADHD – 20% have TDs (Gillberg et al, 2004)

- OCD
 - Repeated, unpleasant thoughts or images, repetitive, distressing rituals
 - TD – 30-50% cases (Pauls et al, 1991)
 - OCD – 10-30% cases (Holzer et al, 1994)
Specific Learning Difficulties

<table>
<thead>
<tr>
<th>SpLD</th>
<th>Estimated Percentage</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyslexia</td>
<td>4-8</td>
<td>Snowling, 2009</td>
</tr>
<tr>
<td>Dysgraphia</td>
<td>7</td>
<td>Brook and Boaz, 2005</td>
</tr>
<tr>
<td>Dyscalculia</td>
<td>4-6</td>
<td>Butterworth, 2010</td>
</tr>
<tr>
<td>ADHD</td>
<td>3-6</td>
<td>Simonoff, 2008</td>
</tr>
<tr>
<td>SLI</td>
<td>7</td>
<td>Bishop, 2011</td>
</tr>
<tr>
<td>Presence of a SpLD</td>
<td>18</td>
<td>Brook and Boaz, 2005</td>
</tr>
</tbody>
</table>

http://www.bis.gov.uk/assets/biscore/corporate/migratedD/ec_group/101-08-FO_on

Need to remember co-existence of many conditions
Academic Learning Difficulties

- **Rates vary**
 - 51% - Burd et al (1991)
 - 23% - Schuerholz et al (1996)
 - 23% - Burd et al. (2005)
- More frequently males, onset before age 8, perinatal problems, > likely to have coprophenomenon.
- Family history was less frequent; other co-morbidities were significantly more frequent, particularly ADHD
- Arithmetic deficiencies Huckeba et al. (2008)
 - ADHD accounted for most of the differences
Prevalence - Clinic at GOSH

- 2006-2011 ADHD/OCD/ASD (HIV, epilepsy..)
- 19/46 more than 1.5 SD between Indices (broader Average range)
- 4 Statement of SEN
- 9 IEP
- Most fulfil criteria for more than 1 SpLD

Cognitive Function
Comorbidity
Specific LDs

SpLD

- Dysexecutive
- SLI
- Dyslexia
- Dyspraxia
- Dysgraphia
- GLD
- Poor Comprehenders
How to Screen carefully for SpLD

- Developmental History
- School reports
- Caution of relying on referral to EP
- Questionnaires are useful
- Standardised tests
- Increased risk for SLd if ADHD present (primary or secondary)
Deficits Associated with ADHD?

Both ADHD and TS
- Childhood onset
- Excessive motor activity
- Identified abnormalities in the cortical-striatal-thalamo-cortical circuit
 - Reduced caudate volumes (Peterson et al, 2003)
 - Thinning of sensorimotor cortices (Sowell et al 2008)
 - Reduced cortical inhibition in motor circuitry (Orth et al, 2009)
Case study - Recommendations

- Time accommodations / Reader / Scribe
- Speech recognition software (Dragon 12)
- Bibliotherapy on SpLD (Snowling, Muter)
- Morphemes for spelling (Nunes & Bryant, 2006)
- Reciprocal reading strategies (Oczkillo, 2003)
- Organisation of written work (www.inspiration.com/kidspiration)
- Working memory intervention (Cogmed)
- Strategies for tics
- Chang et al, 2007
 - Spatial attention deficits in OCD group not TS
- Bloch et al, 2006
 - Higher IQ
- Gresberg and McKay, 2003
 - Visual Spatial deficits
• Time accommodations with study skills of how to use them
• Referral for CBT for OCD
• Graded approach with feedback
• Use of visual timetables, prompts from teacher
• Mentor for problem-solving
• Education for teachers (primary and secondary)
• Availability of visual and verbal information
Conclusion
• How to distinguish multiple SpLDs when they co-exist with TS
• How to figure out what the worst problem is?
Motor tics can interrupt processes such as writing, reading

Absenteeism from school can compromise progress

Tic suppression – brain / behaviour changes - cause or effect? Who will respond to behavioural treatments

Informing Educational supports

Prognosis (Fine motor skills)

Screen for co-morbidity (Behaviour vs Cognition)

Experimental and ecological measures
Queries, questions, comments?